Electron beam grafting – a versatile strategy for the modification of polymer surfaces

Swiss MNT Event «Trends in Micro Nano», Brugg, 23.4.2015

Prof. Dr. Per Magnus Kristiansen
Institute of Polymer Nanotechnology (INKA)
University of Applied Sciences and Arts Northwestern Switzerland (FHNW)

Grafting of polymer brushes on polymers

Exposure to particles or photons e.g. EUV

Pattern of radicals, stabilised as hydroperoxides

Immersion into monomer solution e.g. acrylic acid

Degassing Heating

Pattern of polymer brushes
Grafting experience at INKA – some examples from academic research

pH-induced wettability switching of weak polyelectroly brushes

Selective grafting of vinyl formamide from ETFE\(^1\) surfaces.
\(^1\) poly(ethylene-alt-tetrafluoroethylene)

Reversible changes in contact angle with changes in pH
Filling of the lines with colored liquids is based solely on the strong wettability contrast between the graft polymer and the ETFE surface

Ref. S. Neuhaus, "Functionalization of Polymer Surfaces with Polyelectrolyte Brushes", Dissertation at the ETH Zurich, 2011

Electron beam processing in the polymer industry today

Typical applications for EB cross-linking

Typical applications for EB degradation

Degradation polymer materials

PTFE → for powders
PP → to improve formability
Cellulose → to produce viscose

Materials: PE, PVC, PVDF, EPR, EVA
Dose: 50 – 200 kGy
Energy: several MeV

Ref: «Industrial radiation processing with electron beams and X-rays», IAEA - International Atomic Energy Agency, Revision 6, May 2011
Historical development of e-beam Systems – COMET’s revolutionary development

since the ’60ies

the ebeam «light bulb»
- small
- affordable
- hermetically sealed
- integrated vs. designed around
- high life (~8000h)
- «consumable» vs. high O&M

since the ’70ies

COMET’s unique sealed beam emitter technology

- “beam shower”; no beam deflection
- low voltage: 200-300 kV, 4 kW

Dose (% of maximum dose)

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Dose %</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Range (g/m²) or depth in water (µm)

460 mm
EBLab 200 - COMET’s Laboratory e-beam Emitter system

- radiation-proof protected
- weight: 1'300 kg
- footprint: ~1 m²
- treatment of samples up to A4
- low voltage version: up to 200 kV
- transport speed up to 30 m/min
- nitrogen purging (standard)
- option: ozone filtration for beaming in air

EBLab 200 installed at INKA 10.07.2014 (placement contract with COMET)

Grafting approaches for surface functionalization

- «Grafting from» - established method
 1. Activation of surface by irradiation (X-rays, e-beam, particles, plasma)
 2. Immersion into monomer solution, degassing
 3. Heating of solution → Polymerization (exothermal), oxygen exclusion required

- «Grafting-to» - conventional
 • requires functional groups on substrate & suitable linkers on graft molecules
«Grafting-to» approaches using e-beam (novel tendency)

Direct coupling or polymerization of functional molecules, polymers, proteins by e-beam

Examples:

- **Hydrophilization of membranes [1]**
 - Direct polymerization of styrene into pores upon EB exposure

- **Functional PES membranes [2]**
 - In situ grafting of carboxylic acids, sulfonic acids and amines

- **Biofunctionalized membranes [3]**
 - Covalent coupling of trypsin in membranes → protein functionality remains intact

References:

1) M.M. Nasef et al., J of Membrane Sci 2006, 268, 106
2) A. Schulze et al., Macromol Rapid Commun 2010, 31, 467
3) S. Starke et al., Reactive & Functional Polymers 2013, 73, 698

Schematic of the e-grafting process

Process steps

1. Coating of substrate with functional polymer (from solution)
2. e-beam treatment (under variation of process parameters)
3. Rinsing of samples for removal of unreacted material

e-grafting is simple and fast
Proof of concept

Hydrophilization of hydrophobic polymers
(feasibility study, completed)

e-grafting modification of nonwovens
(running project)

Demonstration of increasing hydrophilicity with multiple
e-grafting modification steps

Opportunities and challenges for e-grafting

• Advantages
 • 1-step coating procedure
 • Broad variety of functional polymers commercially available
 • High flexibility in substrate choice
 • Covalent attachment \(\rightarrow\) high stability anticipated

• Open questions
 • Potential wetting issues depending on solution & substrate material
 \(\rightarrow\) substrate pre-treatment may be required
 • Functionality retention after e-grafting (looks good so far)

• Challenges
 • Coupling mechanisms not completely understood
 • Only very few substrate/graft combinations investigated to date
 • Applicability to 3-dimensional objects (of interest for some applications)
Versatile functionlization strategy – many possible surface effects

- **modified wettability**: hydrophilic, hydrophobic, oleophobic, omniphobic(?)
- **modified surface chemistry**: acidic, basic, specific functionalities
- **responsive/adaptive**: pH, temperature, light (photochromic), deformation, swelling
- **biofunctional/-active**: specific binding, enzyme imobilisation
- **tribological**: reduced friction, self-lubrication
- **protective**: non-fouling, antibacterial, antimicrobial, antistatic

- **Additional benefits of ebeam**: tunable penetration depth, sterilization for free
- **Substrate choice**: films, membranes, textiles and nonwovens (3D parts to come)

There is plenty of options at the top of and within the surface of polymers

Prof. Dr. P.M. Kristiansen Swiss MNT-Event “Trends in Micro Nano” 23.4.2015 14

Our broadband vision

- **Elevation of Technology Readiness Level**
 - customized EBLab extensions (special sample holders)
 - Explore in-line e-grafting (and scalability)
- **Demonstration of effects** for different applications
- **Mask-assisted e-grafting** for selective surface modification
- **Combination of micro- and nanostructures with e-grafting**
 - Bio-inspired surface effects
- **Flood exposure in context with grayscale e-beam lithography**
- **Fundamental understanding of e-grafting process**
 - with selected academic partners

→ Exploiting the potential in an open, collaborative user network ...!
Acknowledgements

- **COMET:** Ian Bland, Michael Bielmann, Willi Wandfluh
- **PSI:** Celestino Padeste, Matthias Dübner, Robert Kirchner, Helmut Schift, Lorenz Gubler, Toni Forner-Cuenca
- **FHNW:** Sonja Neuhaus, Iva Michaljanicova, Sebastian Wollmann, Urs Bruggisser, Alfons Pascual, Markus Grob
- **Partners:** for broad interest in e-grafting topic and for proactive involvement in the exploitation of this functionalization strategy (no names disclosed due to confidentiality reasons)
- **Support:** i-net Basel, Hightechzentrum Aargau, Förderstiftung FHNW
- **Funding:**
Contact Details

University of Applied Sciences and Arts FHNW - School of Engineering

Institute of Polymer Nanotechnology (INKA)
Institute of Polymer Engineering (IKT)

Prof. Dr. Per Magnus Kristiansen
Deputy head of INKA & IKT

Klosterzelgstrasse 2
CH-5210 Windisch
Switzerland
Tel +41 56 202 73 86
Fax +41 56 202 75 74
magnus.kristiansen@fhnw.ch
www.fhnw.ch/technik/inka

Main collaborators at INKA-FHNW

Polymer replication on nanoscale

Christian Rytka
Senior scientist

Tel +41 56 202 73 81
Fax +41 56 202 75 74
christian.rytka@fhnw.ch
www.fhnw.ch/technik/inka

Education:
Polymer & Elastomer Technology (Dipl.-Ing. FH)
Micro- and Nanotechnology (MSc. FH)
Industrial experience:
Georg Fischer, EMS Chemie

Functionalization by e-beam grafting

Dr. Sonja Neuhaus
Project leader e-grafting

Tel +41 56 202 78 95
Fax +41 56 202 75 74
sonja.neuhaus@fhnw.ch
www.fhnw.ch/technik/inka

Education:
Material Sciences (MSc. ETH)
Polymer nanografting, at PSI (Dr. sc. ETH)
Industrial experience:
Glas Trösch