Nanostructured sensors

Raphaël Pugin

Section Head Nanoscale Technology

Why nanostructures?

CSEM objective and strategy

 Develop processes and manufacturing chains for the large volume fabrication of submicro-/nano- structured surfaces, films, components with enhanced performances or unique properties.

Outline

- Manufacturing of plastic nanostructured biodiagnostic platform
 - Origination of low-cost, large scale nanostructures
 - Upscaling or replication of nanostructures by injection molding
 - Demonstration of improved performances (signal homogeneity, sensitivity)
- Manufacturing of disposable patch & film for gas sensing
 - Fabrication of functional mesoporous sol-gel film
 - Integration for Life Sciences
 - Pressure Sensitive Painting for Aeronautics
 - Air quality monitoring application

Nanostructured biodiagnostic platform

• Objectives:

Improve sensitivity of injection-molding biodiagnostic platform with nanostructuration

- Control of the wettability of detection spots
- Improve signal quality and homogeneity

- Tooling: fabrication of nanostructures on a mold insert presenting microchannels and micropins
- Replication : optimization of the replication process for nanostructured micromolds

Micro- and nano-structures tested

- Origination of nanostructures by beads and polymer selfassembly
- Replication into plastic, fabrication of nanostructured biodiagnostic platform:
 - Hot embossing and Injection molding: PC parts with four different structures
- Characterization:

csem

- Influence of structuring on wettability
- Biodiagnostic platform : fluorescence immunoassay

Influence of structuring on wettability

• Dynamic contact angles of water measured on the four types of hot embossed structures and, as a control, flat PC

- Advancing water contact angle and contact angle hysteresis significantly increased
- Wetting mode : Wenzel type (sticky drops)

Tests using a model immunoassay

- In these tests, the antibody used for detection is inkjet-printed on the spots of the bio-diagnostic platform.
- The fluorescent spots were imaged using a confocal microscope

- Better spot homogeneity: no coffee-ring effect after spotting
- 30% increase in fluorescence for structure S3 (increase in specific surface, different roughness, possible scattering of the emitted light)

Manufacturing of functional mesoporous films

• Objective:

Develop disposable sensitive film enabling the optical detection of dissolved analytes or gases

- Low cost manufacturing process
- Higher performance: shorter response time, higher sensitivity

- Manufacturing: Optimize and upscale sol-gel coating
- Highly controlled range of porosity and chemical composition

New chemically sensitive optical patches

- State-of-the-art: sensitive molecules embedded into a matrix (polymeric, inorganic)
- Encapsulation of active species into a secondary microporous matrix

Hierarchically porous

Advantages:

CSEM Patent pending

Mesoporous

Demox

- Determine oygen concentration in cell and tissue culture
- Bio-compatible low cost sensor (disposable SG patch)
- Customizable readers equipped with integrated optics and electronics
- CSEM provides complete solution
- Bio-Innovation Prize awarded to CSEM by the Fondation Eclosion

O2 sensor performances

Frequency-domain lifetime fluorimetry

- SPECIFICATIONS accuracy and confidence interval (CI)
- Single point calibration in ambient air
- 0-21% O₂ (stable environment)

O₂ sensing in gas phase at 23/37°C and 70/90% humidity

Accuracy	0.1% at 2% O ₂
	0.2% at 21% O ₂
Precision - 95% confidence interval	$\pm 0.3\%$ at 2% $\rm O_2$
	±0.3% at 21% O ₂

Reference fluorimeter

Energy

:: CSem

- Pressure-Sensitive Paintings (PSP) for aero-dynamic testing in wind tunnel: mesoporous sol-gel coatings are used to measure fast pressure variations observed in an unsteady aerodynamic flow
- Higher sensibility when compared to standard PSP, better performances in luminescence (10x) and responsiveness (F_{acq.} up to 10KHz vs F_{acq.} < 1KHz for std PSP).
- Technology patented, will be transferred to ONERA (2017-18) for commercialization

 CCIFS Innovation Trophy awarded to CSEM

CO₂ sensor for air quality monitoring, prototype fabricated

- Highly sensitive CO₂ sensing foil based on patent pending fabrication process
- Sensing patch easy to replace
- Miniature optical reader with reflector system needs low power

CO₂ sensor performances

- Absorbance
- SPECIFICATIONS accuracy and confidence interval (CI)
- Single point calibration in ambient air
- 0-15% CO₂ (stable environment) phenol red

CO₂ sensing in gas phase at 23°C and 70% humidity

Accuracy	0.2% at 3% CO ₂
	0.2% at 12% CO ₂
Precision - 95% confidence interval	±0.4% at 3% CO ₂
	±1% at 12% CO ₂

Reference spectrometer

Conclusions

- Process chains for the fabrication of nanostructures surfaces and components have been developed and patented:
 - nanostructured plastic chip by injection molding
 - Mesoporous films by sol-gel process
- Functional nanostructured sensors have been fabricated for different applications
 - High performance biodiagnostic platform
 - Optical sensor for O₂ monitoring in cell culture device
 - Pressure sensitive painting for aeronautics
 - Optical sensor for CO₂ monitoring (Life Sciences and air quality control)

Thank you for your attention and follow us on

www.csem.ch

••

Optical gas sensing

Sensor performances

• Accuracy & Precision

3D mold insert structuring

Deposition of particles on the microstructured mold insert

• Objective : deposition of nanoparticles on the mold insert produced by Vuillermoz (in the holes made by micromilling ($Ø300\mu m$, depth 150 μm))

• Successfull deposition at the bottom of the microholes

Deposition of particles on the microstructured mold insert

- Deposition on the sidewalls of the microholes
- The background roughness due to the micromilling process does not affect the deposition process

Deposition of particles on freeform parts

Deposition on a coronary stent

:: CSEM

3D mold insert structuring

- Use the process developped for 2D parts onto the 3D mold insert.
- Fabrication of a nanoporous etch mask and electrochemical etching

- Nanostructures have been fabricated into the microholes
- Homogeneity to be improved
- Difficulties to characterize the results (AFM not possible)

Fabrication of nanostructures

Origination of nanopatterns by self-assembly

• Fabrication of a **formulation** containing micro-nanoparticles or block copolymers and **deposition** of thin films on a substrate

Formulation/Dispersion

Deposition

Characterization

Fabrication of nanostructures

Random low-cost nanostructures transfered in replication tool

- Self-Assembled structures transferred in nickel or hard steel replication tools
- 2 and 3D nanostructured inserts and mold

csem

••

Replication

UV Nanoimprint

UV Light

Hot embossing

Injection molding

- Rapid prototyping
- Highest accuracy
- UV-curable resins (PUA, solgel)

 Small series production
 Thermoplastic & thermosetting materials High throughput
Large series production

csem

••

Applications

Superhydrophobic surfaces

- Fabrication of micro/nanostructured plastic parts using replication techniques.
- Control surface chemistry using MVD[™] technology
- Characterization of wettability : dynamic water contact-angles, high speed videos recording of drop impacts

Chemistry: Perfluoro SAM

- Superhydropbobic, self-cleaning surfaces
- Controlled wetting states (Wenzel vs Cassie-baxter)
- Superhydrophilic /hemiwicking surface also possible

Superhydrophobic surfaces

• High speed video records of water drops impacts on superhydrophobic surfaces:

Structure 1

Anti-icing surfaces

• Objective:

Fabrication of superhydrophobic surfaces with enhanced erosion resistance to **improve the performance of electromechanical de-icers** and lower their energy consumption

- Fabrication of **nanostructured surfaces** by means of UV-nanoimprint
- Control surface chemistry using MVD[™] technology
- Characterization: measurement of ice-adhesion strength, outdoor icing tests

Applications

Anti-icing surfaces

- Both structured/flat samples are iced with snow gun
- Ice easily removed from nanostructured samples by pole shaking
- Ice remained on polished Al surface, event after scratching
- Ice adhesion strength measured by applying shear until the pellet adhesively or cohesively breaks

After icing + ice gently shed

:: CSem

F

Application: wearable device

- Objective: Create and integrate PV solution in a wristband
- Fabricate textured surface for the growth of the flexible solar cell that provide excellent light coupling capabilities
- Outstanding PV performance at ultra-low illumination
- Upscaling of the texturation process (30x30 cm²) successful.
 UV-NIL on 30-200µm thick polymer foil

Nanostructured biodiagnostic platform

• Objective :

Injection molding of nanostructured biodiagnostic platform with improved sensitivity

- Control of the wettability of detection spots
- Improve signal quality and homogeneity

- Tooling: fabrication of nanostructures on a mold insert presenting microchannels and microholes
- Replication : optimization of the replication process for nanostructured micromolds

Applications

Biological cell growth

- Grow eukaryotic cells on flat and structured surfaces
- Analyse the morphology of the cells after 3days
- Characterize the adhesion of cells on flat/structured surfaces

- Control the growth of adherent cells via micro-nanostructuring surfaces.
- Create surfaces with cell-adhesion/cell repellent patterns

20.0

0.0

-20.0

Flat

DM

BEA

(235nm)

Functionalisation via aerosol-jet printing

- Aerosol-jet printer system AJ-300
 - Aerodynamic focusing of colloidal suspension
 - Contact-free deposition
 - 3D and flexible substrates
 - Deposited materials incl. metals, polymers, ceramics, dielectrics, biomaterials...

Electrode on pipet tip

Biofunctionalisation by Aerosol Jet Printing

- Currently optimising deposition parameters for biological samples on various chemistries
- Spots can be done on structured or 3D samples

