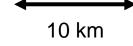


Mikrofluidik 4.0 – Erwartungen an die Diagnostik von morgen

Trends in Micro Nano – 30.11.2017, Technologie Park Basel

Prof. Dr. Per Magnus Kristiansen, INKA Institute of Polymer Nanotechnology FHNW University of Applied Sciences and Arts Northwestern Switzerland & PSI

Outline


- Short Intro to INKA Institute of Polymer Nanotechnology
- Motivation for thermoplastic microfluidics
- Why Microfluidics 4.0 Trends and Challenges
- Injection molded microfluidics an older example
- Next generation(s) Potential of surface topographies and more
- Summary

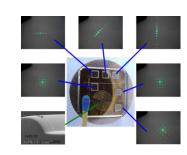
INKA – a meanwhile 13 year old "joint (ad)venture" between FHNW & PSI

FHNW - IKT & INKA

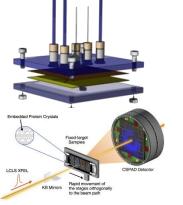
LMN – Laboratory for Micro- und Nanotechnology

Functionalization of polymer materials by

- micro- and nanostructured surfaces
- chemical surface modification (grafting)
- nanoscale additives

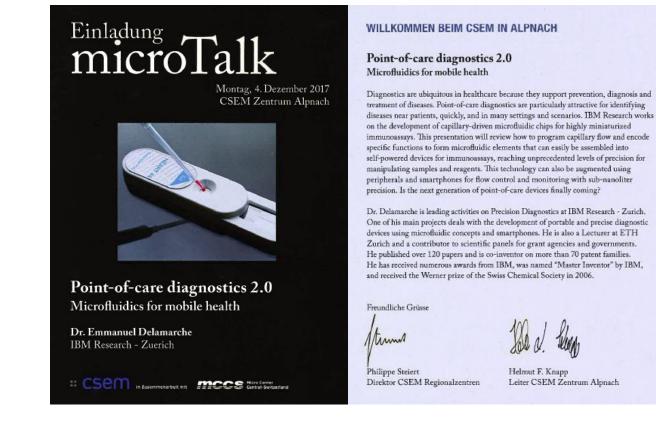


The value chain of micro- & nanostructured polymer devices



Diagnostics development history at INKA

- De-wetting analytical test tubes
 - Realized 3D lotus effect by laser machining
- DOEs for QC in microfluidic chip (MFC) production
 - Proven correlation between DOE and channel quality
- MFC with 2-side structuring for blood diagnostics
 - Tooling & process development ; succesful transfer to industry
- Polymeric Microcantilevers for diagnostics applications
 - PhD project Prabitha Urwyler (Uni Basel); molding the «impossible»
- Whole blood (evancescence-based) diagnostics chip
 - Optical surfaces combined with difficult part design
- PEEK microfluidics for membrane protein research
 - Laser drilling, embossing & thermal bonding
- Highly integrated MFC (custom specific design)
 - Combination of a multitude of different design features
- Most recently: Sample environments for photon sciences



Disclaimer – Microfluidics 4.0 / Point-of-care diagnostics 2.0

Event promotion flyer of CSEM

17.00	Begrüssung	
	Helmut Knapp Leiter CSEM Zentrum Alpnach	
17.10	Point-of-care diagnostics 2.0 Microfluidics for mobile health	
	Emmanuel Delamarche IBM Research - Zuerich	
18.00	Diskussion	
18.15	Apéro	
19.00	Ende der Veranstaltung	

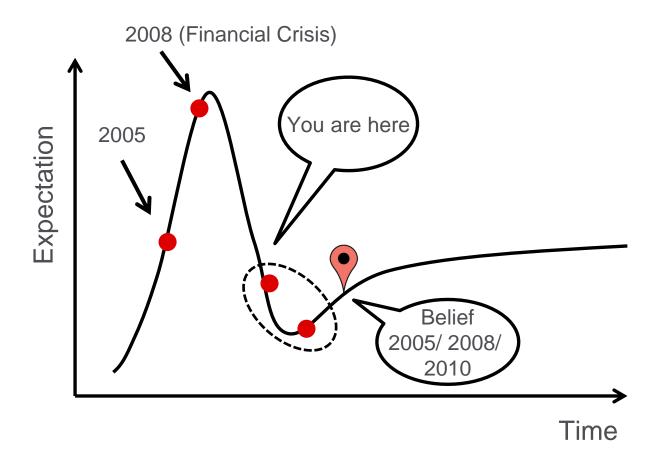
For a broader perspective on PoC diagnostics, join next Monday in Alphach !

\rightarrow Note: Registration closes today!

Prof. Dr. P.M. Kristiansen

Helmut F. Knapp

Leiter CSEM Zentrum Alpnach



Motivation for thermoplastic microfluidics

- Nice review paper* highlighting some of the remaining issues in microfluidics
- «in the industry (...) thermoplastics have been preferred as low-cost and mass-producible alternatives to PDMS as well as to silicon and glass.
- «PDMS microfluidic devices or silicon-based (e.g. CMOS) sensors are widely adopted in the academic community because they are easy to apply for proof-of-concept purposes, but typically manufacturability and economy of scale are not as favorable as plastic chips.»
- «Packaging and interfacing microfluidics remain a significant technical challenge and obstacle for the commercialization and wide-spread use of microfluidics»
- * Ref: Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Microelectron. Eng. 132, 156-175 (2015)

Gartner Hype Cycle of microfluidic cartridges

Where are we really?

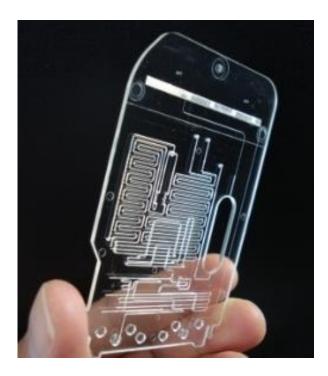
- Some applications are on the market
- Tremendous amounts of R&D with up to pre-serial production
- However, there is still no killer application... Yet.

Ref: C. Denier, *Microfluidics Workshop* 2016, Basel

Why Microfluidics 4.0 – Trends & Challenges

Observed trends in microfluidics

- Increasing complexity of MF designs
- MF building blocks become smaller
- Handling of small sample volumes
- Requests for added functionalities
- Platform «spirit» same designs for different purposes
- Hybridization attempts, e.g. for sensor and electronics integration


Challenges in manufacturing

- Robust manufacturing processes, reliably reaching tight tolerances
- Process feedback loops required
- Quality control both in- and off-line
- Efficient functionalization methods and related novel approaches
- Interface connection to the outside
 (→ standardization efforts)

What industry is looking for requires «Industry 4.0» manufacturing approaches

A meanwhile old microfluidic chip for point-of-care blood analysis

Chip & photo by FHNW

KunststoffXtra, 12,64-67 (2016)

- True 2-side structured microfluidic chip
- Channel dimensions 100-500 µm
- Multiple connecting through-holes
- 5 integrated optical read-out zones
- Material: cyclo-olefin copolymer (COC)
- Hybrid mold concept (Nickel only where needed)
- Very narrow process window

A meanwhile old microfluidic chip for point-of-care blood analysis

In-Office Immunoassay • Lab Quality Without the Lab Results in 10 Minutes from finger-stick of whole blood sample

The Claros ₀ 1 in-office analyzer and Sangia ™ microfluidic assay cassettes are a complete immunoassay solution for the physician's office

Obtain quantitative lab-quality results

· Achieve fast turn around time (10 minutes)

· Sample from a small drop of blood - no venipuncture

· Enables rapid clinical decision-making

Defines course of patient treatment in a single office visit

Chip & photo by FHNW

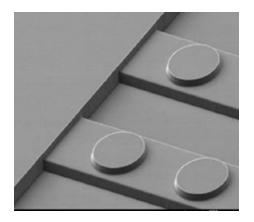
KunststoffXtra, 12,64-67 (2016)

Ref: http://claros1.opko.com/

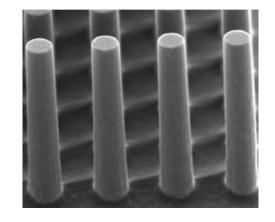
Claros 1 and Claros 1 Total PSA are CE Marked and Pending FDA Clearance

 $\mathbf{n}|\mathcal{U}$

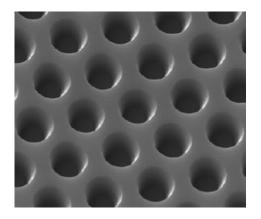
Lab on chip for biotechnology – the next generation(s)


- Single molecule detection
- Individual molecule quantification
- Integration of different functionalities
- Separation of substances
- On-Chip detection and reading
- Parallel and high throughput sensing/reading
- Reliability

Chip & photo by IBM and University Hospital of Basel Lab on a Chip, 9 (2009)


Typical topography requirements of modern microfluidic biosensors

Multi height features


- combining fluidic channels with detection areas and reservoirs
- filtering
- removing bubbles
- changing the flow characteristics (e.g. hydrodynamic focusing

High aspect ratios

- filtering
- mixing
- cell sorting
- increasing shear flow
- increasing cell-antibody interaction
- making surface superhydrophobic

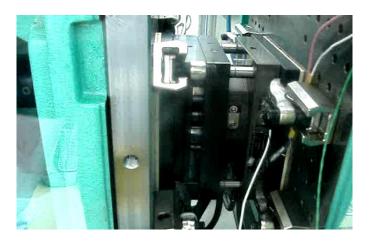
High density arrays

- beads trapping
- localization of DNA and proteins
- high density reaction chamber
- localized surface plasmon resonance
- diffractive elements

Realizing microfluidics by variothermal injection compression molding

High fidelity replication is possible with

- Variothermal process control
- Injection compression molding

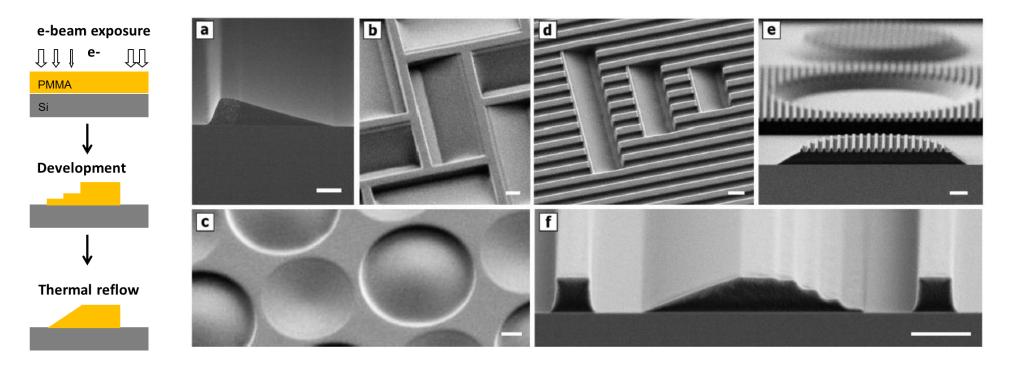

Dedicated moulding tools

- Variothermal / isothermal + compression
- Online viscosity control

Peripheral equipment & subsequent processes

- Handling robots, pick-up systems
- Bonding technologies, surface treatment

It is impressive what can be injection molded – but can we go even further?

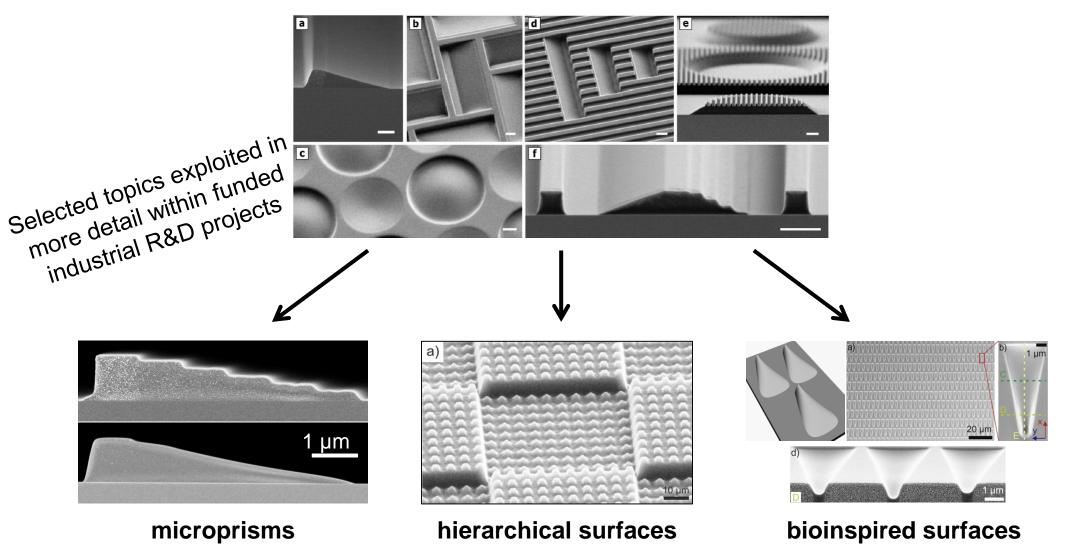


Courtesy of Helmut Schift, INKA-PSI

SEVENTH FRAMEWORK

TASTE – "Thermally activated selective topography equilibration"

Enabling technology for complex submicron 3D patterning (grayscale electron beam lithography + thermal reflow)

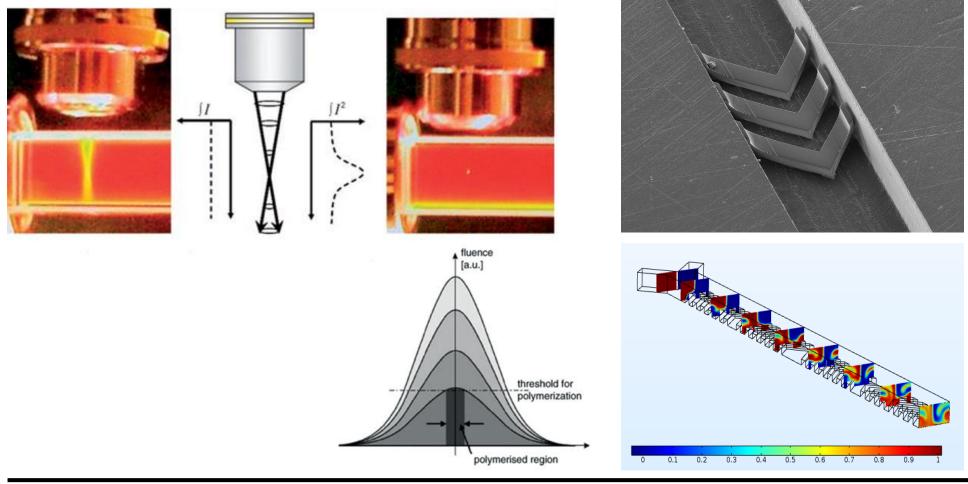


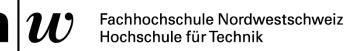
Ref: A. Schleunitz et al. Nano Convergence 2014, 1:7

Scale bars: 1µm

h *W* Fachhochschule Nordwestschweiz Hochschule für Technik

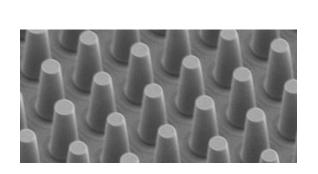
TASTE technology – outreach into industrial applications

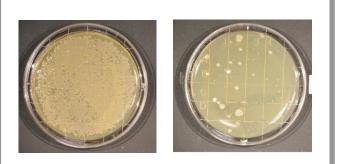



Courtesy of Jonathan Schmidli, INKA-FHNW

Staggered herringbone mixers

Sequential addition of functional features (here by 2-photon polymerization)


Single vs. 2-photon exposure


Functional polymer surfaces - further options to be explored

PASSIVE

Surface properties induced by topography *and/or chemistry*

- Adapted wetting behavior, embedded capillary effects
- Self-cleaning, Antifouling
- Scratch resistance
- Haptics, e.g. soft touch

ACTIVE

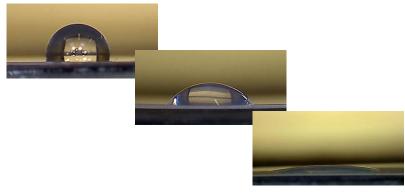
Surface property plays an active role, modifying interaction

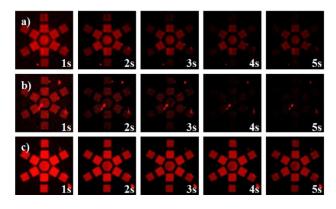
- Antimicrobial (biocidal), antifungal, etc.
- Light management
- Cell interaction, e.g. guiding

SMART / RESPONSIVE

Surface properties change upon external stimulation

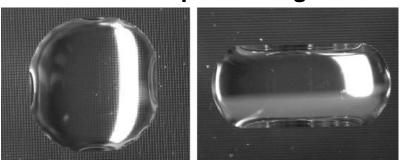
- External stimuli: pH, light, temperature, magnetic field ..
- Biomolecule interaction
- Sensing / Actuation
- Self-healing


There is tremendous room at the top and the bottom of your imagination


Courtesy of S. Neuhaus and C. Padeste, INKA-PSI

Functional polymer surfaces achieved by chemical modification (grafting)

Wettability control (optionally triggered)


Photoresponsive brushes

Enzymatic activity

Anisotropic wetting

Summary and Outlook

- Industrial replication of complex micro-/nanostructures is possible
 - Functionality without change in material (regulatory advantage)
 - Where is the ultimate limit for complexity?
- Additional functionalities can be implemented «on-mold»
 - Integrated optics, e.g. for in-coupling or readout
 - Functional micro/nanostructures, e.g. hydrophopic barriers
- Or we can further modify the parts themselves (if feasible)
 - Laser-based modifications, i.e. for «writing» waveguides or conductors
 - Altering surface chemistry in addition, i.e. grafting, photochemistry, ...
- What else? Your imagination is a good starting point for a discussion

Contact Details

FHNW University of Applied Sciences and Arts Northwestern Switzerland School of Engineering

Institute of Polymer Nanotechnology (INKA)

Prof. Dr. Per Magnus Kristiansen Head of the institute

Klosterzelgstrasse 2 CH-5210 Windisch Switzerland Tel +41 56 202 73 86 Fax +41 56 202 75 74 magnus.kristiansen@fhnw.ch

www.fhnw.ch/technik/inka

