

Materials Science and Technology

Nano-Joining Technologies

Dr. Pierangelo Gröning

Trends in Mikro Nano

Swiss Micro- & Nanotechnology Network Basel, 30. November 2017

pierangelo.groening@empa.ch

Joining Technologies Barely a Device without Joining Processes

Brazing & Soldering Applications @ Empa

Microelectronics & Sensors

Turbines

Thermoelectric

Miniaturization & Diversification

Advanced bonding & packaging technologies require

- ✓ Low-*T*, *p*ressure-less, solvent-free joining process with high alignment accuracy
- ✓ Hybrid nanotechnology (i.e. bonding of wide variety of dissimilar materials)
- Heterogenous integration (i.e. combine different functionalities in single system)

Nanowire FETs Source: ITRS 2.0 (2015)

<u>Source:</u> http://www.sle.sharp.co.uk

Transient Liquid Phase (TLP) Bonding Principal

Ag₃Sr

CI

20.0um

Basic Principles of the TLP process

Low-melting metal

- Sn (T_{m,l} = 232 °C)
- + ■ In (*T*_{m.l} = 157 °C)

High-melting metal

- Cu, Ag, Au
- Ni (T_{m,h} = 1455°C)

TLP (Sn; Ag, Ni):	235 °C ≤	$T_{\rm process} \le 300 \ {\rm ^{\circ}C}$
• <u>Ag-Sn:</u> formation of Ag	J ₃ Sn(ε):	<i>T</i> _m = 480°C
 <u>Ni-Sn</u>: formation of Ni₃ 	Sn ₄ :	<i>T</i> _m = 794.5 °C

Transient Liquid Phase (TLP) Bonding *Applications*

Ag-Ni-Sn TLP bonding for power electronics

Ni-Sn TLP bonding for thermoelectric module for exhaust applications

Melting Point Depression

Film-thickness-dependent melting; Phys. Stat. Sol. 15 (1966) 181

Nano-joining Approach @ Empa

Microstructural design of Nanomultilayered Fillers to direct mass transport for localized bonding by exploiting the following nano-scale effects:

- ✓ Fast short circuit diffusion of atoms along internal interfaces
- Melting point depression of metals and alloys when confined to the nanoscale

- J Mater Chem C 4 (2016), 4927
- Phys Chem Chem Phys 17 (2015) 28228
- Acta Materialia 107 (2016) 345
- Scr Mater 130 (2017) 210
- J. Mater. Sci. Eng. B 6 (2016) 226
- J Mater Eng Perform 25 (2016) 3275

CuAg/AlN NML filler

Nano-joining Approach @ Empa NML Fabrication by DC Magnetron Sputtering

 Ag_{10nm}/AIN_{10nm} (dark)

pronounced island growth

interface roughness

highly uniform layers

Nano-joining Approach @ Empa Cu/W Nano Multilayer System

<u>Ref:</u> Acta Materialia 107 (2016) 345

Annealing at T > 700 °C leads to gradual degradation of NML into a functional nanocomposite, consisting of globular W particles embedded in Cu matrix.

Nano-Joining

Low-temperature Brazing of Al Alloys (Patent DE102008050433.5)

Ultra-thin Al-Si_{10at.%} films sandwiched between inert AlN diffusion barriers exhibit size-dependent melting point depression (MPD)

References:

- J Mater Chem C 4 (2016), 4927
- Phys Chem Chem Phys **17** (2015) 28228
- Acta Materialia **107** (2016) 345
- Scr Mater 130 (2017) 210
- J. Mater. Sci. Eng. B **6** (2016) 226
- J Mater Eng Perform **25** (2016) 3275

Binary alloy systems

Constituents	Density (g/cm³)	Heat of reaction (kJ/mole atom)
Al + Pt*	11.63	-100.39
Al + Pd*	7.07	-91.30
3Si + 5Ti	3.72	-72.47
3Si + 5Zr	5.14	-72.10
5Nb + 3Si	6.23	-63.75
Al+Ni*	5.17	-59.17
Al + Co*	5.17	-55.20
2Al + Zr	4.24	-54.09
Al + 2B	2.61	-50.31
2Al + Ti	3.33	-44.61
Al + 3Ni	6.82	-38.25
Al + Ti*	3.63	-37.60
2Al + Zr	4.24	-33.73

Metal-oxide thermite systems

Constituents	Density (g/cm³)	Heat of reaction (kJ/mole atom)
2AI + 3CuO	5.11	-149.14
Ti + 2CuO	5.83	-126.57
$2AI + Fe_2O_3$	4.18	-120.79
3Ti + 2Fe ₂ O ₃	5.01	-91.24
Ti + Fe ₃ O ₄	4.97	-82.31
$2AI + Cr_2O_3$	4.19	-76.60

Ni-Al Nanofoils[©] is the only commercially product up to date!

Reactive Joining using Ni-Al Nanofoils[©]

total time: 2.5 milliseconds

Process characteristics

- > Local ignition at room temperature with electrical spark, laser pulse or hot filament.
- > Self-propagating reaction: Ni + AI \rightarrow NiAI (no gaseous product; heat of reaction \approx -52 kJ/mol)
- > Self-propagating reaction front with temperature > 1000 °C and speed up to 50 m/s!
- > Defined heat release by tailoring the overall composition and bilayer thickness

Reactive Nano-Joining

Danke für Ihre Aufmerksamkeit

Acknowledgement to the team of the *Joining Technologies* & Corrosion Laboratory Dr. Lars Jeurgens (lars.jeurgens@empa.ch) Prof. Dr. Jolanta Janzack-Rusch, Dr. Mirco Chiodi, Dr. Claudia Cancellieri Dr. Vicente Araullo-Peters, Dr. Hans-Rudolf Elsener