

Transistors à nanofils de silicium pour la détection de ions et protéines

EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU Michel Calame

Department of Physics & Swiss Nanoscience Institute University of Basel, Switzerland *Since Oct.* 1st, 2016, also at Swiss Federal Laboratories for Materials Science & Technology Dübendorf, Switzerland

Empa

Materials Science and Technology

Trends in Micro Nano event, Swiss mnt network, Bienne, October 25, 2016

research activities

nanoscale electronics & molecular junctions

Individual molecular junctions

A. Vladyka, J. Overbeck, M. El Abbassi, et al.

Networks of molecular junctions & hybrid devices

A. Vladyka et al.

Graphene & metrology

K. Thodkar, M. El abbassi, A. Vladyka, J. Overbeck et al.

Optoelectronics & plasmonics

J. Overberck, T. Fröhlich et al.

ions and biochemicals detection

Si nanowires FETs

ions bio-molecules

pathogens

pH, Na⁺, K⁺, Ca²⁺, F⁻ lectin (FimH) sugar binding protein Avails Medical

M. Baghernejad, A. Fanget, O. Synhaivska, R. Stoop, M. Wipf et al.

OECTs

R. Stoop, M. Sessolo, H. Bolink (Valencia) et al.

Silicon-based transistors for sensing

motivation: diagnostics & drug screening

- specific detection of biochemicals at low cost
 time-resolved, label-free, quantitative, portable
 statistically relevant datasets for multiple analytes
- simplify point of care-, point of prescription & possibly home-diagnostics

see e.g. Erickson et al., Lab on a chip (2014) Public Health, Nanotechology & Mobility program (PHeNoM, Cornell)

Silicon-based biochemical sensors

- high-integration
- industrial fabrication processes

⇒ Si nanoribbons operated as ion-sensitive field-effect transistors (ISFETs)

transducing biochemical reactions in electrical signals

F. Patolsky, C.M. Lieber et al. MRS Bulletin 2007

Silicon-based transistors for sensing

motivation: diagnostics & drug screening

- specific detection of biochemicals at low cost
 time-resolved, label-free, quantitative, portable
 statistically relevant datasets for multiple analytes
- simplify point of care-, point of prescription & possibly home-diagnostics

see e.g. Erickson et al., Lab on a chip (2014) Public Health, Nanotechology & Mobility program (PHeNoM, Cornell)

Silicon-based biochemical sensors

- high-integration
- industrial fabrication processes

example: non-optical, on-chip sequencing using integrated ISFETs for pH monitoring

Rothberg et al., Nature (2011) Ion-Torrent technology

Welcome

and insurt chief

ISFETs as potentiometric biochemical sensors

Theoretical limit: Nernst response

$$\Delta V_{th} = V_{th,2} - V_{th,1} = 2.3 \frac{kT}{e} \log_{10}(\frac{c_2}{c_1}) \approx 59.6 \,\mathrm{mV} \cdot \log_{10}(\frac{c_2}{c_1})$$

see e.g. Bergveld, IEEE Trans. Biomed. Eng (1970); Bergveld, Sensors & Actuators (2003), IEEE Sensor Conference (2003)

ions sensing with Si FETs

M. Wipf, R. Stoop, et al. ACS Nano (2013) K. Bedner, V. Guzenko, J. Gobrecht et al., PSI

 OH_{2}^{+}

OH

0-

ions sensing with Si FETs

- pH & surface passivation
- ions Na⁺, K⁺, Ca²⁺, F⁻
 HfO2, Al2O3 or Au surfaces
 - noise, size, s/n ratio, competition effects
- quantifying protein-ligand interactions state of the art: surface plasmon resonance (SPR) limited throughput, cost-intensive

⇒ can SiNW do the job ?

to date mostly DNA and biotin-streptavidin interactions, see e.g. Reed et al.,. Nat. Nano (2012)

Test system: FimH (bacterial lectin)

with B. Ernst, G. Navarra, Dpt. Pharmacology, Uni Basel

UTI therapy: high-affinity FimH antagonists ⇒ affinity screening tests: SPR Ernst et al., J. Med. Chem. 2010, 2012; Chemmedchem 2012

FimH detection kinetics

functionalization

- mercaptohexadecanoic acid (MHDA)
- amine coupling for ligand

beyond ions

- reduced ionic strength buffer: 10mM HEPES, pH 8 (Debye length $\lambda_D \ge 3$ nm) ensure that the proteins are within the electrical double to affect the surface potential
- at pH 8: FimH neg. charged \Rightarrow I_{sd} increase upon binding
- SiNW operated in linear region (constant transconductance g_m)

FimH binding kinetics vs concentration

FimH binding kinetics vs concentration

M. Wipf, R. Stoop, et al., ACS Sensors (2016)

FimH binding kinetics vs concentration

comparison SiNRs & SPR

 different association and dissociation rates (ka, kd)

NB: variations between SPR systems! Cannon et al., Anal. Biochem. 2004; Katsamba et al., Anal. Biochem. 2006

possible origins of differences

 flow rate at sensor surface & different surface areas

 FimH-mediated bacterial adhesion affected by shear forces see e.g. Vogel et al., J. Bacteriol. 2007, J. Biol. Chem. 2008
 re-adsorption of proteins in flow

• different effective protein concentration (fluidics)

signal	
	SPR
	SiNR
protein injection	time

Fluidic channel	BioFET	Biacore
Flow rate	$26\mu\mathrm{L/min}$	$20\mu { m L/min}$
Height	$100\mu{ m m}$	$40\mu{ m m}$
Width	$500\mu{ m m}$	$500\mu{ m m}$
Length	$4\mathrm{mm}$	$2.4\mathrm{mm}$
Volume	$\approx 0.2\mu \mathrm{L}$	$\approx 0.05 \mu \mathrm{L}$

• different sensing mechanisms: optical ($\lambda_{evan} \sim 300$ nm) or charge ($\lambda_{D} \sim 3$ nm)

⇒ protein surface rearrangements affect SiNRs stronger than SPR, longer time const. Rabe et al., Adv. Colloid Interface Sci. 2011, Roach et al., JACS 2005

conclusion & outlook

Si nanoribbon transistors as biosensors

- time-resolved & label-free detection of FimH with s/n ratio >700
- Au surface for strongly reduced pH response & suitable surface chemistry for direct comparison with SPR systems
- quantitative detection by taking into account competing reactions
- enhanced sensitivity to surface rearrangements as compared to SPR

⇒ ISFETs for diagnosis & drug discovery

Outlook: transmembrane proteins functionality & bacterial activity

M. Baghernejad, A. Fanget et al., with C. Palivan, W. Meier et al., (Basel), D. Fotiadis et al. (Bern) A. Jesorka et al. (Chalmers)

Molecular Systems Engineering

start-up collaboration

http://www.availsmedical.com/ Menlo Park (CA) USA

"Accurate, rapid, digital detection of infections in any bodily fluid to indicate in real-time which drugs will be most effective at the point-ofprescription"

O. Knopfmacher M. Herget (CEO) (CTO)

Axel Fanget

Avails AST technology vs disk diffusion to monitor microorganisms resistance to anti-biotics

Acknowledgment

- Maria El Abbassi •
- Kishan Thodkar Anton Vladyka

Axel Fanget

•

- Oliver Braun (1.12) Jan Overbeck
- Masoud Baghernejad
- Olena Sinhaivska
- Yves Mermoud

Former coworkers

R. Stoop (Barcelona), M. Wipf (Yale Univ.), A. Tarasov (BioMedX, Heidelberg), W. Fu (Jülich).

Nanoelectronics, Uni Basel

C. Schönenberger

Collaborations

J. Gobrecht, V. Guzenko, K. Bedner (PSI)

- O. Knopmacher, M. Herget (Avails Medical, USA)
- E. Constable, C. Housecroft et al. (Basel)

G. Navarra, B. Ernst (Basel)

- C. Palivan, W. Meier et al. (Basel)
- D. Vuillaume et al. (IEMN, Lille)
- A. Jesorka et al. (Chalmers)

Funding

- Swiss Nanoscience Institute, Uni Basel
- Federal Office of Metrology, Switzerland
- European Union FP7 ITN & Strep and H2020 FET programs
- SNSF NCCR Molecular Systems Engineering
- Avails Medical, USA
- nanotera SNSF

EU FP7 & H2020

MOLESCO (ITN) Record It (FET)

METAS

Molecular Systems Engineering

NCCR

