

Materials Science & Technology

1.7 nm

Nanostrukturierte Beschichtungen:

Wenn die Architektur wichtiger wird als die Chemie

swiss mnt network: "Trends in Mikro-Nano"

Hochschule Luzern Technik & Architektur Donnerstag, 5. Dezember 2013

Dr. Pierangelo Gröning (pierangelo.groening@empa.ch)

Head of the Department "Advanced Materials and Surfaces" Ueberlandstrasse 129 CH-8600 Duebendorf

Function follows Architecture

... novel materials and coatings with well defined architectures on the nano-scale.

Empa / Pierangelo Gröning

Nanostructured Thin Films and Coatings Hardening via Interfaces

TiN/SiN_x Multilayer Coating

Superhard n-c:TiN/Si₃N₄ Coatings

Nanostructured Thin Films and Coatings

Transparent Hard Coating: $Al_{1-x}Si_{x}N - Si_{3}N_{4}$

Empa / Pierangelo Gröning

Joining: Melting Point Depression

Discovered in 1954 by M. Takagi Source: Wilden, DVS Forschungsseminar, 2006

- T_s: bulk melting temperature
- σ : solid-liquid interface energy
- L: bulk heat of fusion
- ρ: density of particles
- r: particle radius

Nano-Brazing Fillers for Joining of Al-Alloys

Melting temperature of AlSi in AlN/AlSi nano-multilayers

Nano-Brazing Fillers

Theoretical predictions vs. experimental verifications

Microstructural investigations by cross-sectional He-Focussed-Ion-Beam (FIB) imaging and HR-TEM

vacuum

vacuum

Multi-scale atomistic simulations (combining DFT, Molecular Dynamics, Monte Carlo , Molecular Statics) of pre-melting of free-standing and interface-bounded Cu films at 1200 K (bulk melting @1358 K).

Transparent Conductive Electrodes

Applications of transparent conductive oxides (TCOs)

Source: IDTechEX

New applications: High flexible electronics (Prototypes of flexible computers (2013))

..... requires a replacement of TCOs. \rightarrow Graphene is an excellent candidate!

Graphene Synthesis

1st

A Rapid Development

Graphene for Electronic Applications

□ Thermal conductivity:
□ Graphene ~ 5000 Wm⁻¹K⁻¹
□ Silicon ~ 150 Wm⁻¹K⁻¹

Electron mobility:
Graphene < 200'000 cm²V⁻¹s⁻¹
Silicon 1400 cm²V⁻¹s⁻¹

Problem: Graphene is a semi-metal and not a semi-conductor!!

(3p+1) N=7: E_G = 1.6 - 3.8 eV

Theoretical prediction: Graphene Nanoribbons (GNR) are semiconductors!

Empa / Pierangelo Gröning

Graphene Nanoribbons

Bottom-Up Synthesis

"Nano-Structured Thin Films & Coatings"

Graphene Nanoribbons

- □ STS: band gap Δ =2.3 eV [on Au(111)]
- □ ARPES: $m^* = 0.21 m_0$; max. band slope: 8.2·10⁵ m/s
- □ DFT: image charge correction of ~1.4 eV

Publications:

- □ Chem. Comm., 6919 (2009)
- **JACS**, **132**, 16669 (2010)
- □ Nature, **466**, 470 (2010)
- □ Nature Chem., **3**, 61 (2011)
- □ ACS Nano, **6**, 2020 (2012)
- □ ACS Nano, **6**, 6930 (2012)

..... the Material for Future Electronics!

Thank you for your kind Attention the I had to be In Constant