

prof. Marco Mazza

MEMSonIC2

Ultra thin pressure sensor for turbine blade optimisation

Manno, September 26th, 2013

Main objective

 ✓ to develop a miniaturized, fully integrated pressure sensor for turbine blade optimization;

Turbine losses based on numerical flow simulation, "Axial Flow turbine development for Ultra Low-Head (ULH) Hydro projects", Jacek Swiderski

Requirements

- ✓ Dimensions
 - ✓ Thickness: smaller than 1mm
 - ✓ Diameter: smaller than 10mm
- ✓ Consumption
 - ✓ Less than 50 µA
- ✓ Range and sensibility
 ✓ 0-100 bar, precision 1 bar

Ecole d'ingénieurs et d'architectes de Fribourg Hochschule für Technik und Architektur Freiburg

Sensor design and fabrication

Sensor fabrication process

Glass substrate

Sputtering of the bottom gold electrode

Ultrasonic cleaning in isopropyl alcohol

Spin-coating of the PDMS layer

Curing of the PDMS on a hot plate

Parylene encapsulation

Sputtering of the top gold electrode

Freeing of the bottom electrode

FEA modeling

Simulation vs. measurements

Ecole d'ingénieurs et d'architectes de Fribourg Hochschule für Technik und Architektur Freiburg

Read-out integrated circuit

Sensing principle

CBCM: Charge-Based Capacitance Measurement

Sensing circuit

Ecole d'ingénieurs et d'architectes de Fribourg Hochschule für Technik und Architektur Freiburg

Sensing circuit

ASIC design

Circuit tests (internal varactor)

Circuit tests

Circuit performances

Circuit performances

Circuit version	Parameter	Value	Unit
300fF	I _{DD}	38.7	uA
	P _S	127	uW
3pF	I _{DD}	42.5	uA
	P _S	127	uW
30pF	I _{DD}	51.9	uA
	P _S	127	uW

	Circuit version	Simulation	Measure	Unit	
	300fF	30	35	mV/fF	
Varactor	3pF	33	38	mV/fF	
	30pF	37	34	mV/fF	
Sensor	300fF	-	-	mV/bar	
	3pF	19	1.4	mV/bar	< current leakage ?
	30pF	126	-	mV/bar	

On-going work and valorization

PoUSSyERE

<u>Platform for Ubiquitous Smart Systems for Embedding Recording of Events</u>

Proximity sensing

Cell sensing

Somashekat et al., "A Fully Differential Rail-to-Rail Capacitance Measurement Circuit for Integrated Cell Sensing", IEEE Sensors 2007.

Conclusions

- An ultra-thin pressure sensor has been designed, developed and tested, matching requirements;
- CMOS and MEMS have been co-integrated, but still on different substrates, full co-integration feasibility is confirmed;
- An integrated differential capacitive sensor has been successfully tested and validated as a general platform.

Acknowledgements

- Prof. Herbert Keppner, prof. Elena-Lavinia
 Niederhäuser, Lorenzo Pirrami, Benjamin Graf
- ✓ ISYS, a former HES-SO network for supporting the project

Thank you...

