

Sensor

Schönenberger group www.nanoelectronics.ch

wikipedia:

"A sensor (also called detector) **converts** a measured **physical quantity** into **a signal which can be read by an observer** or by an instrument. "

Schönenberger group www.nanoelectronics.ch

wikipedia:

A sensor (also called detector) **converts** a measured **physical & chemical quantity** into **a signal which can be read by an observer** or by an instrument.

Chip-based sensing Schönenberger group www.nanoelectronics.ch

Bio- / chemical sensor

Schönenberger group www.nanoelectronics.ch

a device that can detect molecules with some specificity

Bio- / chemical sensor

Schönenberger group www.nanoelectronics.ch

a device that can detect molecules with some specificity

how can this information be read ?

Schönenberger group www.nanoelectronics.ch how can this information be read ? a device that can detect molecules with some specificity how can this information be read ? mechanically a) mass change (QCM) b) strain (cantilever) b) strain (cantilever)

Schönenberger group www.nanoelectronics.ch

Bio- / chemical sensor

a device that can detect molecules with some specificity

Bio- / chemical sensor

Schönenberger group www.nanoelectronics.ch

a device that can detect molecules with some specificity

mechanically

- a) mass change (QCM)
- b) strain (cantilever)

optically

- a) labelled (DNA chip)
- b) refractive index
- c) Plasmonics

OPTICAL WAVEGUIDE GRATING COUPLER SENSOR CHIP

Potentiometric sensing

Potentiometric sensing

Ion Sensitive FET (IS-FET)

Schönenberger group www.nanoelectronics.ch

channel conductance (i.e. threshold) depends on gate charge

Ion Sensitive FET (IS-FET)

Schönenberger group www.nanoelectronics.ch

channel conductance (i.e. threshold) depends on **gate charge**

Ion Sensitive FET (IS-FET)

Schönenberger group www.nanoelectronics.ch

channel conductance (i.e. threshold) depends on **gate charge**

Dental Application

Schönenberger group www.nanoelectronics.ch

• Food components that lower pH of dental plaque cause caries

chips

K. Bedner et al.

chip

DRAI

W_{top} 185nm

up-scaling

Microfluidics

in the lab in operation

NW-ISFET "quality"

 V_{ref}

NW-ISFET "quality"

reproducibility

Stability measurements 5.5 days

FinFET sample (EPFL) 8nm HfO₂ gate ox pH6 buffer solution

- 4 different nanowires
- Max. Drift ~2mV/day
- differential drift ~ 0mV

S. Rigante et al.

Genome sequencing

An integrated semiconductor device enabling non-optical genome sequencing 348 | NATURE | VOL 475 | 21 JULY 2011

Jonathan M. Rothberg¹, Wolfgang Hinz¹, Todd M. Rearick¹, Jonathan Schultz¹, William Mileski¹, Mel Davey¹, John H. Leamon¹, Kim Johnson¹, Mark J. Milgrew¹, Matthew Edwards¹, Jeremy Hoon¹, Jan F. Simons¹, David Marran¹, Jason W. Myers¹, John F. Davidson¹, Annika Branting¹, John R. Nobile¹, Bernard P. Puc¹, David Light¹, Travis A. Clark¹, Martin Huber¹, Jeffrey T. Branciforte¹, Isaac B. Stoner¹, Simon E. Cawley¹, Michael Lyons¹, Yutao Fu¹, Nils Homer¹, Marina Sedova¹, Xin Miao¹, Brian Reed¹, Jeffrey Sabina¹, Erika Feierstein¹, Michelle Schorn¹, Mohammad Alanjary¹, Eileen Dimalanta¹, Devin Dressman¹, Rachel Kasinskas¹, Tanya Sokolsky¹, Jacqueline A. Fidanza¹, Eugeni Namsaraev¹, Kevin J. McKernan¹, Alan Williams¹, G. Thomas Roth1 & James Bustillo

ion-torrent

can one measure something else ?

oxide surface highly sensitive to protons \rightarrow Nernst limit sensitivity to other ions is usually very small !

if there are other reactions on the surface that can compete with the de-protonation and proton addition at OH sites, the pH sensitivity may be reduced

NW with floating gate

Au coated NW: Selective Sodium

Results

- maximum sensitivity (Nernst limit) can be achieved (Al₂O₃ and HfO₂)
- oxide surfaces (Al₂O₃ and HfO₂) can be highly selective to protons
 (yielding ideal pH sensor up to buffer conc. of 10 mM)
- 3. maximum sensitivity also for the narrowest nanowires
- 4. highest resolution in concentration best for wide wires
- 5. differntial measurement greatly improves stability
- 6. full passivation possible → "ideal" reference electrode
- good sensitivity with high selectivity to other ions can be achieved
- 8. multi-ion sensing is promissing

System Architecture

nanowire

- 16 nanowires can be interfaced in parallel
- voltage across each nanowire is kept constant, and the current flowing through is measured
- •Two different analog-to-digital converter architectures are used (12 bits resolution)
- Current range: 1 nA to 5 μA

CMOS readout

34

SENSIRION

nanowire

