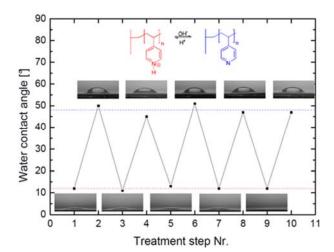

$\mathbf{n}|w$

Electron beam grafting – a versatile strategy for the modification of polymer surfaces

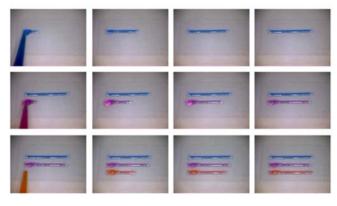
Swiss MNT Event «Trends in Micro Nano», Brugg, 23.4.2015

Prof. Dr. P.M. Kristiansen

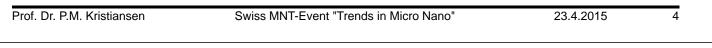

3

Grafting experience at INKA - some examples from academic research

pH-induced wettability switching of weak polyelectroly brushes



Reversible changes in contact angle with changes in pH


Ref: S. Neuhaus, "Functionalization of Polymer Surfaces with Polyelectrolyte Brushes", Dissertation at the ETH Zurich, 2011

Selective grafting of vinyl formamide from ETFE¹ surfaces.

¹ poly(ethylene-alt-tetrafluoroethylene)

Filling of the lines with colored liquids is based solely on the strong wettability contrast between the graft polymer and the ETFE surface

 $\mathbf{n}|w$

Fachhochschule Nordwestschweiz Hochschule für Technik

Electron beam processing in the polymer industry today

Typical applications for EB cross-linking

Materials:PE, PVC, PVDF, EPR, EVADose:50 - 200 kGyEnergy:several MeV

Typical applications for EB degradation

Degrading polymer materials


PTFE \rightarrow for powders **PP** \rightarrow to improve formability **Cellulose** \rightarrow to produce viscose

Ref: «Industrial radiation processing with electron beams and X-rays», IAEA - International Atomic Energy Agency, Revision 6, May 2011 $\mathbf{n}|w$

Historical development of e-beam Systems – COMET's revolutionary development

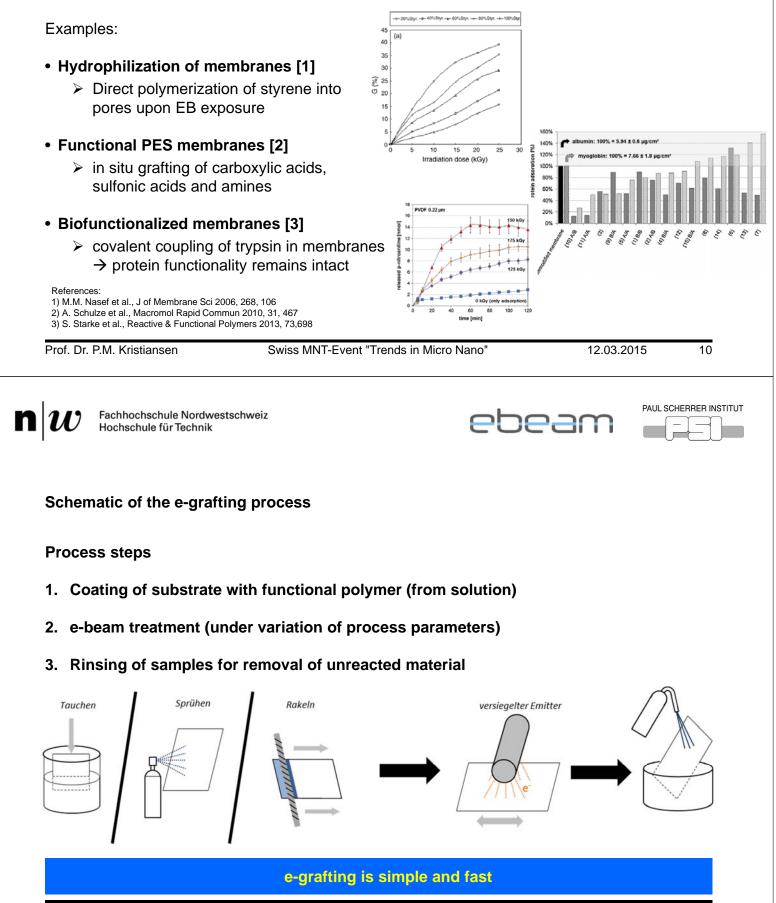
n

EBLab 200 - COMET'sLaboratory e-beam Emitter system

- radiation-proof protected
- weight: 1'300 kg
- footprint: ~1 m²
- treatment of samples up to A4
- low voltage version: up to 200 kV
- transport speed up to 30 m/min
- nitrogen purging (standard)
- option: ozone filtration for beaming in air

	EBLab 200 installed at INKA 10.07.2014 (placement contract with COMET)								
	Prof. Dr. P.M. Kristiansen Swis	Dr. P.M. Kristiansen Swiss MNT-Event "Trends in Min		23.4.2015	8				
	Fachhochschule Nordwestschweiz Hochschule für Technik	chweiz et			PAUL SCHERRER IN				
	Grafting approaches for surface f	unctionalization							
 • «Grafting from» - established method 1. Activation of surface by irradiation (X-rays, e-beam, particles, plasma) 2. Immersion into monomer solution, degassing 3. Heating of solution → Polymerization (exothermal), oxygen exclusion required 									
	Initiatoren	$\xrightarrow[R_2]{R_1}{\Delta T}$	SLÆVLÆVLÆVLER	{} }					
 «Grafting-to» - conventional requires functional groups on substrate & suitable linkers on graft molecules 									
			N 8125 2125851	E1					

1) coat 2) UV

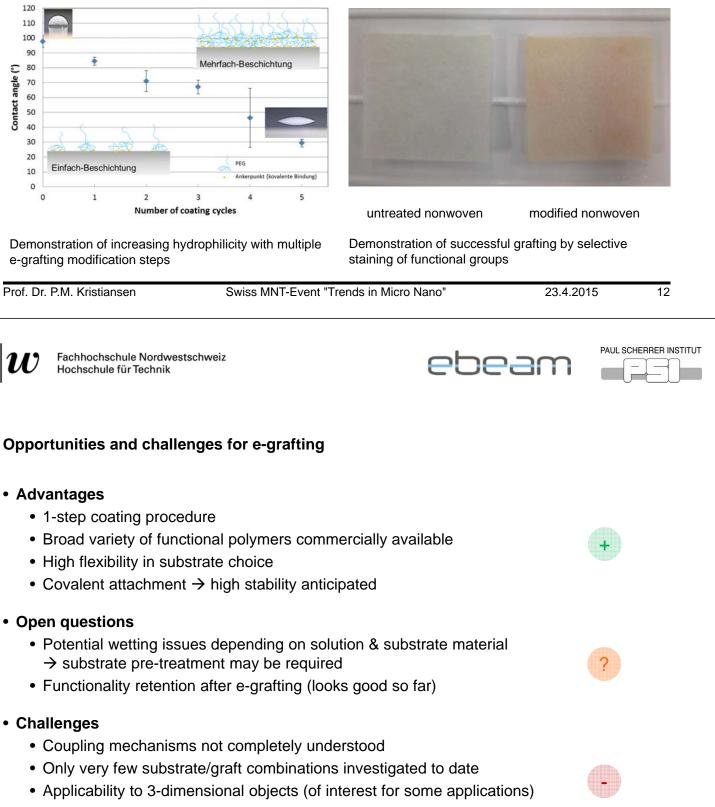


«Grafting-to» approaches using e-beam (novel tendency)

Direct coupling or polymerization of functional molecules, polymers, proteins by ebeam

 $\mathbf{n}|w$

Proof of concept

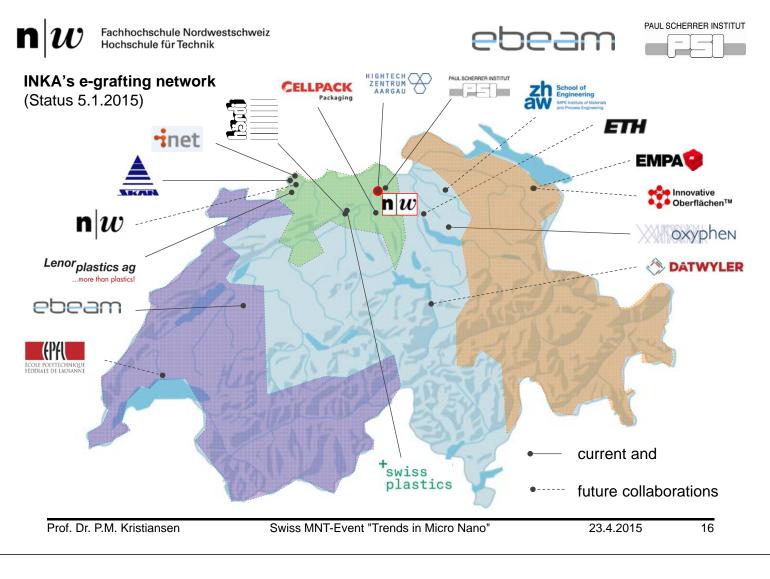

Hydrophilization of hydrophobic polymers

(feasibility study, completed)

	10			32	Sitt	ast
	00 🦸			100		W-ADEX
4	90	-				
	80 -	T		Mehrfach-Beschichtung		
	70		+	ł	-	
(60		1	1		
-	50					-
4	40	. (<)			\sim
	30	a de de	and des			÷
2	20		- 		7	
		Einfach-Beschichtung		PEG Ankerpunkt (kovalente Bindung)		
	10				 Ankerpunkt (kov 	alente Bindung)
					N20 - 20	
	10 0 0	1	2	3	4	5

Demonstration of increasing hydrophilicity with multiple e-grafting modification steps

e-grafting modification of nonwovens (running project)


Versatile functionlization strategy – many possible surface effects

- modified wettability: hydrophilic, hydrophobic, oleophobic, omniphobic(?)
- modified surface chemistry: acidic, basic, specific functionalities
- responsive/adaptive: pH, temperature, light (photochromic), deformation, swelling
- biofunctional/-active: specific binding, enzyme imobilisation
- tribological: reduced friction, self-lubrication
- protective: non-fouling, antibacterial, antimicrobial, antistatic
- Additional benefits of ebeam: tunable penetration depth, sterilization for free
- Substrate choice: films, membranes, textiles and nonwovens (3D parts to come)

Prof. Dr. P.M. Kristiansen	Swiss MNT-Event "Trends in	Micro Nano"	23.4.2015	14
Fachhochschule Nordwestse Hochschule für Technik	chweiz	ebe		
Our broadband vision				
 Elevation of Technolog customized EBLab ex Explore in-line e-grafti 	tensions (special sample h		ustrial pact	
Demonstration of effect	cts for different applications	6		
Mask-assisted e-graftig	ng for selective surface mo	odification		
 Combination of micro- Bio-inspired surface 	• and nanostructures with effects	e-grafting		
	itext with grayscale e-bea			

Exploiting the potential in an open, collaborative user network ...!

 \rightarrow

Fachhochschule Nordwestschweiz Hochschule für Technik

ebeam

Acknowledgements

- COMET: Ian Bland, Michael Bielmann, Willi Wandfluh
- **PSI:** Celestino Padeste, Matthias Dübner, Robert Kirchner, Helmut Schift, Lorenz Gubler, Toni Forner-Cuenca
- FHNW: Sonja Neuhaus, Iva Michaljanicova, Sebastian Wollmann, Urs Bruggisser, Alfons Pascual, Markus Grob
- **Partners:** for broad interest in e-grafting topic and for proactive involvement in the exploitation of this functionalization strategy (no names disclosed due to confidentiality reasons)
- Support: i-net Basel, Hightechzentrum Aargau, Förderstiftung FHNW
- Funding:

Contact Details

University of Applied Sciences and Arts FHNW - School of Engineering

Institute of Polymer Nanotechnology (INKA) Institute of Polymer Engineering (IKT)

Prof. Dr. Per Magnus Kristiansen Deputy head of INKA & IKT

Klosterzelgstrasse 2 CH-5210 Windisch Switzerland Tel +41 56 202 73 86 Fax +41 56 202 75 74 magnus.kristiansen@fhnw.ch www.fhnw.ch/technik/inka

Prof. Dr. P.M. Kristiansen

Swiss MNT-Event "Trends in Micro Nano"

23.4.2015

18

Fachhochschule Nordwestschweiz Hochschule für Technik

Main collaborators at INKA-FHNW

Polymer replication on nanoscale

Christian Rytka Senior scientist

Tel +41 56 202 73 81 Fax +41 56 202 75 74 christian.rytka@fhnw.ch www.fhnw.ch/technik/inka

Education: Polymer & Elastomer Technology (Dipl.-Ing. FH) Micro- and Nanotechnology (MSc. FH) <u>Industrial experience</u>: Georg Fischer, EMS Chemie

Functionalization by e-beam grafting

Dr. Sonja Neuhaus Project leader e-grafting

Tel +41 56 202 78 95 Fax +41 56 202 75 74 sonja.neuhaus@fhnw.ch www.fhnw.ch/technik/inka

Education: Material Sciences (MSc. ETH) Polymer nanografting, at PSI (Dr. sc. ETH)

Industrial experience: Glas Trösch

19